

Feb 19-8:47 AM

$$
\begin{aligned}
& =2+\frac{8 n^{2}+\cdots}{2 n^{2}}+\frac{16 n^{3}+\cdots}{6 n^{3}} \\
& \lim _{n \rightarrow \infty}\left[2+\frac{8 n^{2}+\cdots}{2 n^{2}}+\frac{16 n^{3}+\cdots \cdot}{6 n^{3}}\right] \\
& =2+\frac{8}{2}+\frac{16}{6}=2+4+\frac{8}{3}=6+\frac{8}{3}
\end{aligned}
$$

$$
\text { If } \begin{aligned}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \cdot \Delta x \text { exist, } & =6+2 \frac{2}{3}=8 \frac{2}{3} \\
& =\frac{26}{3}
\end{aligned}
$$

then $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \cdot \Delta x=\int_{a}^{b} f(x) d x$
In our example

$$
\int_{1}^{3} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{1} ^{3}=\frac{1}{3}\left[3^{3}-1^{3}\right]=\frac{1}{3}[27-1]=\frac{26}{3}
$$

Nov 28-10:41 AM

$$
\begin{aligned}
& \text { find the area below } f(x)=x^{3} \text {, above } x \text {-axis } \\
& \text { from } x=0 \text { To } x=2 \text { using Riemann Sum. } \\
& \xrightarrow{\text { 畇 } x_{i} 2} \longrightarrow \begin{array}{l}
\Delta x=\frac{b-a}{n}=\frac{2-0}{n}=\frac{2}{n} \\
x_{i}=a+i \cdot \Delta x=0+i \cdot \frac{2}{n}=\frac{2 i}{n}
\end{array} \\
& \begin{array}{l}
f\left(x_{i}\right)=f\left(\frac{2 i}{n}\right)=\left(\frac{2 i}{n}\right)^{3}=\frac{8 i^{3}}{n^{3}} \\
f\left(x_{i}\right) \cdot \Delta x=\frac{8 i^{3}}{n^{3}} \cdot \frac{2}{n}=\frac{16 i^{3}}{n^{4}} \\
\sum_{i=1}^{n} f\left(x_{i}\right) \cdot \Delta x=\sum_{i=1}^{n} \frac{16 i^{3}}{n^{4}}=\frac{16}{n^{4}} \sum_{i=1}^{n} i^{3}
\end{array} \\
& =\frac{16}{n^{4}} \cdot\left[\frac{n(n+1)}{2}\right]^{2} \\
& \lim \sum_{i=1}^{n} f\left(x_{i}\right) \cdot \Delta x \\
& \begin{array}{rlr}
= & =\frac{16 n^{4}+\cdots}{4 n^{4}} \\
=\lim _{n \rightarrow \infty}\left[\frac{16 n^{4}+\cdots \cdot}{4 n^{4}}\right] \\
& \left.=\frac{16}{4}=4\right] \quad \int_{0}^{2} x^{3} d x=\left.\frac{x^{4}}{4}\right|_{0} ^{2} \\
=\frac{1}{4}\left[2^{4}-0^{4}\right]=\frac{16}{4}=4
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Evaluate use Subs. method } \\
& \begin{aligned}
\int_{1}^{2}+(4 x-2)^{3} d x & \text { Let } \begin{array}{l}
u=4 x-2
\end{array} \quad x=1 \rightarrow u=2 \\
& d u=4 d x \quad
\end{aligned} \\
& \int_{1}^{2}(4 x-2)^{3} d x=\int_{2}^{6} u^{3} \cdot \frac{d u}{4} \quad \frac{d u}{4}=d x \\
& =\left.\frac{1}{4} \cdot \frac{u^{4}}{4}\right|_{2} ^{6}=\frac{1}{16}\left[6^{4}-2^{4}\right] \\
& =\frac{1}{16} \cdot 1280=80
\end{aligned}
$$

Nov 28-10:57 AM

$$
\begin{aligned}
& \int_{-5}^{0} x \sqrt{4-x} d x \quad \begin{array}{l}
u=4-x \rightarrow x=4-u \\
\\
d u=-d x \\
-d u=d x
\end{array} \\
& -d u=d x \\
& \int_{-5}^{0} x \sqrt{4-x} d x=\int_{9}^{4}(4-u) \cdot \sqrt{u} \cdot-d u \\
& \begin{array}{l}
x=-5 \rightarrow u=9 \\
x=0 \rightarrow u=4
\end{array} \quad=-\int_{9}^{4}(4 \sqrt{u}-u \sqrt{u}) d u \\
& \begin{aligned}
x & =0 \rightarrow u=4 \\
& =-\int_{9}^{4}\left(4 \cdot u^{1 / 2}-u^{3 / 2}\right) d u=-\left.\left[4 \cdot \frac{u^{3 / 2}}{3 / 2}-\frac{u^{5 / 2}}{5 / 2}\right]\right|_{9} ^{4}
\end{aligned} \\
& =-\left.\left[\frac{8}{3} u \sqrt{u}-\frac{2}{5} u^{2} \sqrt{u}\right]\right|_{9} ^{4} \\
& =-\left[\left(\frac{8}{3} \cdot 4 \sqrt{4}-\frac{2}{5} \cdot 4^{2} \sqrt{4}\right)-\left(\frac{8}{3} \cdot 9 \sqrt{9}-\frac{2}{5} \cdot 9^{2} \sqrt{4}\right)\right] \\
& =-\left[\left(\frac{64}{3}-\frac{64}{5}\right)-\left(\frac{216}{3}-\frac{486}{5}\right)\right] \\
& =-\left[\frac{-152}{3}+\frac{422}{5}\right]=\frac{152}{3}-\frac{422}{5}=\frac{-506}{15}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{-5}^{0} x \sqrt{4-x} d x \quad \text { Let } u=\sqrt{4-x} \\
& \begin{array}{ll}
x=-5 \rightarrow u=3 & \quad u^{2}=4-x \rightarrow x=4-u^{2} \\
x=0 \rightarrow u=2 & -2 u d u=-d x
\end{array} \\
& \int_{3}^{2}\left(4-u^{2}\right) \cdot u \cdot-2 u d u=\int_{3}^{2}\left(u^{2}-4\right) \cdot 2 u^{2} d u \\
& =2 \int_{3}^{2}\left(u^{4}-4 u^{2}\right) d u=\left.2\left[\frac{u^{5}}{5}-\frac{4 u^{3}}{3}\right]\right|_{3} ^{2} \\
& =2\left[\left(\frac{2^{5}}{5}-\frac{4 \cdot 2^{3}}{3}\right)-\left(\frac{3^{5}}{5}-\frac{4 \cdot 3^{3}}{3}\right)\right] \\
& =2\left[\left(\frac{32}{5}-\frac{32}{3}\right)-\left(\frac{243}{5}-\frac{108}{3}\right)\right] \\
& =2\left[\frac{-217}{5}+\frac{76}{3}\right]=\left[\frac{-506}{15}\right]
\end{aligned}
$$

Nov 28-11:13 AM

Evaluate $\int_{0}^{\pi / 4} \sqrt{\tan x} \cdot \operatorname{Sec}^{2} x d x$ Hint: Let $u=\tan x$
$\begin{aligned} & u=\tan x \\ & d u=\operatorname{Sec}^{2} x d x\end{aligned} \quad=\int_{0}^{1} \sqrt{u} d u=\int_{0}^{1} u^{1 / 2} d u$
$\begin{array}{lll}d u=\operatorname{Sec}^{2} x d x & \int_{0} & =\left.\frac{u^{3 / 2}}{3 / 2}\right|_{0} ^{1} \\ x=0 \rightarrow u=0 & \end{array}$
$x=\pi / 4 \rightarrow u=1 \quad=\left.\frac{2}{3} u \sqrt{u}\right|_{0} ^{1}=\frac{2}{3}$
what if we let $u=\sqrt{\tan x}$
$\begin{array}{ll}\int_{0}^{1} u \cdot 2 u d u & u^{2}=\tan x \\ = & \int_{0}^{1} 2 u^{2} d u=\left.2 \cdot \frac{u^{3}}{3}\right|_{0} ^{2}=x^{2}=\sec ^{2} x d x\end{array}$
\qquad
\qquad
\qquad

$$
\begin{aligned}
& \text { Evaluate } \begin{array}{l}
\int_{\pi^{2}}^{4 \pi^{2}} \frac{\sin \sqrt{x}}{\sqrt{x}} d x \quad \begin{array}{l}
\text { Let } u=\sqrt{x} \\
d u=\frac{1}{2 \sqrt{x}} d x
\end{array} \\
\int_{\pi}^{2 \pi} \sin u \cdot 2 d u \quad 2 d u=\frac{1}{\sqrt{x}} d x
\end{array} \\
& \begin{aligned}
& x=\pi^{2} \rightarrow u=\pi \\
& x=4 \pi^{2} \rightarrow u=2 \pi=-2\left[\left.\cos u\right|_{\pi} ^{2 \pi}\right.
\end{aligned} \\
&
\end{aligned}
$$

\qquad

